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Summary. The “important information” is considered as the formalization of the intuitive 
notions of the information related with “goal”, “instruction”, “control”, “intention”. The 
equations of dynamics for both vector and tensor components of important information are 
considered. The applications of this important information in Inverse Problems, its relations 
with adjoint equations and existing information theories and notions are discussed. The 
classic and quantum cases are compared. The illustrations are provided that present the 
generation and transfer of the vector component of important information in inverse 
computation fluid dynamics problems.  

  
 
1 INTRODUCTION 

The information is one of most popular modern notions used, practically, everywhere. A 
significant number of concepts related with the information are used on semiformal or totally 
intuitive levels. 

The modern standard, Shannon Information theory 1, is aimed only on the communication 
problems (coding, compression, noise resistance), without any relations with a meaning of the 
information. Shannon Information content of text string containing m  signs, having 

probability iP , has a form: ii

m

i
Sh PLogPI 2∑−= . It may be seen, that the Shannon information 

content does not changes under the permutation of signs. It is difficult to accept that the 
permutation of characters in Tolstoy’s “War and society” does not affect the information 
contained in this novel. The reason for this paradox is the lack of coincidence of the intuitive 
“every day” conceptions of information with the Shannon information. 

There are a lot of different intuitive notions of information, commonly used at a “folk” 
level of rigorousity. For example, data base is considered as information, the receipt of pie 
and the road arrow are another option. The information considered here is close to latter one. 
Such information should have “meaning”, be useful, be “valuable”. It is clear, that in certain 
situation a bit of information may be more important if compare with the gigabyte (an 
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information in the arrow that show the way from the library at fire may be more valuable than 
the information in any bookshelf). Obviously, the same formula may have absolutely different 
meaning for different persons, i.e. the information should depend on the state of system. The 
information should also depend on the goal and the available means. Intuitive information 
implies the existence of the disinformation (has sign). The information notion related to 
“instructions”, “recipes” is widely used at everyday life and in science. It has such properties 
as “importance of information”, “value”, “sense”, etc. The variants of such information are 
presented in the books 2,3. The lack of quantitative definitions is the general drawback of these 
approaches. However, in a number of problems the corresponding formalism exists for a long 
time and it seems that troubles are caused by “the effect of the tower of Babel” -the lack of 
common language and proper interpretation. For example, in statistic estimation4,5, Inverse 
statistic problems6, variational data assimilation7,8, extreme statements of Inverse problems9 
this concept of information may be formalized in a unique way. For this formalism dubbing 
we use herein the term “important information”. We mean under the important information 
the knowledge of action that may affect the control parameters in order to reach certain goal 
with the known uncertainty under current state of system. Below we consider the variational 
statement of Inverse Problems from this viewpoint . We also discuss the relation of the 
important information with such notions as intentional information 10, “active information” 11 
that treats the information by the quantum mechanics means. 

2 VARIATIONAL AND STATISTIC STATEMENT OF INVERSE PROBLEMS 
The variational statement of Inverse Problems is rather universal approach7,8,9. We 

consider it, herein, at the example of variational data assimilation problems7,8 which concern 
the estimation of control variables u  vector of some distributed dynamic system (atmosphere, 
for example) from observations obsf  (pressure, temperature, velocity) under the presence of 

covariation matrix of the observation error 1−W . These problems may be recast into the 
optimization of the goal functional 

2/))(),(()( obsobs fAuWfAuu −−=ε , (1)

where A  is the evolution operator (propagator) 
Auf =  (2)

and f  is the prognosis of the system state vector. 
The functional (1) is the discrepancy of the numerical computation (prognosis) and 

measurements, normalized by the data error. Such functionals are usually constructed via a 
scalar product in 2L , however, sometimes another spaces are used, 1H , for example. 

Sometimes9  the uncertainty of measurements is not accounted and the goal functional has 
a simpler form 2/))(),(()( obsobs fAufAuu −−=ε .  

The exact form of the operator A  is unknown if the dynamics is governed by a system of 
partial differential equations (PDE). The numerical solving of PDE system enables to 
determine the action of this operator Auf = . If we can compute the action of the operator 
(and adjoint operator), we may avoid the usage of operator A  explicit form in many practical 
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events. With these reservations, we shall further use the operator A  as a symbol, that enables 
significant reduction of the treatments. 

The gradient of the functional (1) with respect to control parameters may be presented as  

)(* obsfAuWA −=∇ε . (3) 

The optimal solution may be obtained by the Newton iteration step, based on the 
assumption of 0=∇ε  at the extremum point  

bWAAu 1* )( −=  (4) 

where 

WAAF *=  (5) 

and 
obsWfAb *= . (6) 

Usually the operator A  is defined implicitly via the system of PDE and the term obsWfA*  
is also not provided in the explicit form. Fortunately, there exists an efficient technique for 
determination of )( 0

* obsfAuWA −=∇ε  by the solution of adjoint equations9,12. Using the 
gradient the Newton iterations may be stated in the following form 

ε∇−=−=Δ −1*
0 )( WAAuuu . (7) 

Much more often, the gradient based methods are applied, which implicitly use some 
primitive approximation of Fisher matrix: 

n
i

nn
i

n
i uu ετ ∇−=+1 . (8) 

Iterations (7,8) in the contrast to (4), operate in the nonlinear case also. 
The variational form of Inverse Problem (usually, Ill-posed) may be easily regularized by 

adding a penalty term, for example: 

2/2/)()()( jiji
obs

kmkmik
obs

ijij uDufuAWfuAu +−−=ε . (9) 

The matrix ijij ED α=  (α - regularization coefficient) corresponds the Tikhonov regularization 

of zero order13. Since jiji
obs

kmkmikjijjj uDufuAWuAuu Δ+−Δ=Δ∇=Δ )()()( εε  and 

0)( =+−=∇ iji
obs

kmkmikijj DufuAWAε  at minimum, the Newton iteration step has the form: 

obsWfADWAAu *1* )( −+= . (10) 

Generally, the expressions (4-8) are well known in the statistic theory of estimation4,5. 
WAAF *=  is the Fisher information matrix, the expression )( 0

* obsfAuWA −=∇ε  is the 
informant, score. So, no wonder that the statistic theory of estimation may be easily applied to 
Inverse Problems. The statistic Inverse Problems approach6  may be used in linear event if the 
measurement error is available. In a contrast to deterministic statements of Inverse Problems, 
this approach provides both the value under the search and its uncertainty. From this 
viewpoint, the expression (10) defines the solution corresponding the probability density 
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maximum. The matrix D  contains a priori information )2/),((exp()( DuuCuP −= . The 
error of Inverse Problem solution is defined by the covariation matrix (inverse Fisher matrix)  

1*1 )( −− += DWAAF  (11) 

So, the statistic approach enables to solve an Inverse Problem in the sense of calculating 
most probable estimation and the covariation matrix of solution error. 

3 IMPORTANT INFORMATION 
In the domain of Inverse Problems one may define the important information (knowledge 

that is necessary to reach a goal and to obtain uncertainty of results) that consists of the vector 
uΔ  and tensor the 11* )( −− = FWAA  (inverse Fisher information matrix). 
The tensor component of the important information may be considered as certain “ellipsoid 

of concentration”, “ellipsoid of errors”, which describes the uncertainty of goal estimation. 
The tensor component of important information is defined by the evolution operator and the 
error of measurements. 

The vector component of important information may be considered as coordinates of aim 
in the control variables space uΔ . Due to linear transformation (7)  ε∇=Δ −1* )( WAAu , the 
vector component uΔ  may be considered to be equivalent the goal functional gradient ε∇ . 
So, we use ε∇  as the vector component of the important information due to well-developed 
adjoint technique and absence of corresponding equations stated in terms of uΔ . Certainly, 
ε∇  provides exact direction to the goal only if  EF = . The vector component of important 

information depends on the discrepancy of the prognosis and observation and is propagated 
by adjoint equations. 

4 THE VECTOR COMPONENT OF IMPORTANT INFORMATION IN ADJOINT 
EQUATIONS 

Thus, the goal functional gradient is the key element at solving the Inverse Problem. For 
the problems governed by PDE, the efficient method for the gradient calculation is based on 
adjoint problems 12. Usually, the gradient ε∇  is expressed via a combination of the physical 
and adjoint parameters, or, sometimes, via adjoint parameters only. We consider a model 
problem of estimation of source term ),( xtu  from observations ),( xtf obs  in the system 
governed by the transfer equation 

 

0),( =++ xtu
x
fa

t
f

∂
∂

∂
∂ . (12) 

The goal functional (for lucidity posed without an account of error) is engendered by the 
scalar product in 2L  

dxdtxtfxtfu obs 2/)),(),(()( 2−= ∫ε . (13) 

All necessary expressions may be obtained from the stationarity of the Lagrangian  
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dxdttxxtu
x
fa

t
fuuL ),()),(()()( ψ

∂
∂

∂
∂ε +++= ∫ . 

On the solution of main (12) and adjoint problems 

0)( =−++ obsff
x

a
t ∂

∂ψ
∂
∂ψ , (14) 

dxdttxxtuuuL ),(),()()( ψε Δ=Δ=Δ ∫ , 

and the goal functional gradient is equal to the adjoint function  

),( xtψε =∇ . (15) 

The source term obsff −  corresponds  the discrepancy of calculation and observation 
and causes the origin of vector component of the important information. The adjoint equation 
describes a transfer of this component. It should be stressed that in adjoint equations the 
evolution occurs in the reverse time direction. 

The correlation of the of vector component of the important information with the goal 
functional gradient enables to define some intuitive notions. 

The goal may be considered as a goal functional minimum point in the control variables 
space. 

The goal functional gradient may be considered as an instruction, receipt (it shows the 
direction to the goal). 

The dependence of the gradient on the initial state 0u  correlates with the dependence of 
information on an initial, “a priori” knowledge. 

The importance of information (from present goal viewpoint) may be estimated as 
maximum variation of the goal functional at the movement along gradient. 

If we know the exact information  trueε∇ , we may analyze an additional information vector 
M  (for example, message) using the scalar product ),( trueM ε∇  or the distance trueM ε∇− . 

It enables to define information inaccuracy  trueM ε∇− , zero information 0),( =∇ trueM ε  

and disinformation 0),( <∇ trueM ε .  
The extent of information novelty may be estimated as the orthogonal part of ⊥M  with 

respect to  trueε∇ . 
The “price/quality” ratio may be explicitly expressed in the event of Tikhonov 

regularization of zero order14. The relation 0=∇+Δ εα u   may be recast as  0)),(( =Δ∇+Δ uu εα . 
Correspondingly εαεα Δ+Δ=Δ∇+ΔΔ 2),(),( uuuu  and “price/quality” ratio may be expressed 

as the inverse of the regularization coefficient  
),(
),(/1

2

u
uuu
Δ∇
ΔΔ

=
Δ
Δ

=
εε

α . 

The correlation of the important information vector component and the adjoint parameters 
sheds a light for the old mystery. The adjoint equations are used in the wide range of practice 
problems and results are published in thousands of references. However, from the 
mathematical viewpoint, adjoint equations may be obtained from the Lagrange identity for a 
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scalar product, from the stationary conditions for Lagrangian or from the Green function. It 
does not indicate the presence of a general nature at all. Nevertheless, in all cases the adjoint 
equations have the same form and the manner of application. At present, the pragmatic 
approach dominates and all attention is concentrated on the methods for calculation of adjoint 
variables without any discussion of their nature. However, it is very strange that the object, 
used in a standard way in the wide range of applications, has no any physical interpretation. 
By this reason, the works concerning different treating of adjoint equations’ “physical 
meaning” appear regularly, for example 15. 

Lewins (1965)16 used a notion “importance” for the adjoint function, Marchuk12 designated 
the adjoint function as the “function of information importance”. These terms have rather 
vague sense and are of no use. However, the idea to provide some information sense to the 
adjoint variables seems to be highly perspective one. As we have seen, the goal functional 
gradient is correlated with the adjoint function (or, even equal to it). So, a meaning of the 
vector component of important information may be attributed to adjoint parameters, while 
adjoint equations describe its transfer. Thus, the troubles met at the search of the physical 
meaning of adjoint equations are caused not by the treating of adjoints, but by the absence of 
generally accepted qualitative statement of commonly used intuitive information. 

For example, let’s consider the supersonic flow around circular cylinder under the 
impinging shock that is governed by the unsteady two-dimensional Euler equations 

0)(
=

∂
∂

+
∂
∂

k
k

x
U

t
ρρ

, (16) 

( ) ( )
0=

∂
+∂

+
∂

∂
k

ikiki

x
PUU

t
U δρρ

, (17) 

0),()()( 0 =+
∂

∂
+

∂
∂ yxq

x
hU

t
E

k
kρρ

. (18) 

Here VUUU == 21 , , 
v

p

C
C

=γ , ePh γ
ργ

γ
=

−
=

1
, 

1−
=
γ
RTe , ⎟

⎠
⎞

⎜
⎝
⎛ ++= )(

2
1 22 VUeE , 

hVUh ++= 2/)( 22
0 , eP ργ )1( −= . 

The Edney-IV scheme of shock interferention occurs at this flow pattern17 (Fig. 1) with the 
high rise of the pressure at the body surface. It is interesting to estimate a feasibility to reduce 
surface pressure by the volume heat sources ),( yxq  (laser heating, for example). With this 
purpose, we consider the minimization of the functional  

Γ= ∫
Γ

dpq n2/1)(ε . (19) 

The adjoint equations are 

0)1( 0 =
Ψ

+
Ψ

−+
Ψ

+
Ψ

+
∂
Ψ∂

+
∂
Ψ∂

+
∂

Ψ∂
k
ek

k
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k
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X
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XX
UU

X
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U

tt ∂
∂

∂
∂

γ
∂
∂

∂
∂ ρρ , (20) 
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0)1( =
Ψ

−+
Ψ

+
∂
Ψ∂

k
k

k
eke

XX
U

t ∂
∂γ

∂
∂γ . (22) 

 
Initial conditions:                                  0

0,,, =Ψ
=τρ eVU . 

Boundary conditions: 

0,,, =Ψ Ω∂eVUρ . enP n )1(1 −=Ψ −
Γ γρ , ργ )1(1 −=Ψ −

Γ
n

e nP . 

The goal functional gradient coincides with the adjoint inner energy 

),,( yxteq Ψ=∇ε . (23) 

Thus, the adjoint parameters may be also considered as the vector component of important 
information, also. Fig. 2 demonstrates isolines of the adjoint inner energy ),,( yxteq Ψ=∇ε , 
which may be considered as the flowfield of the valuable information. 
 

 
Fig. 1: Density isolines 

 
Fig. 2: Gradient isolines ),,( yxteq Ψ=∇ε  
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5 TENSOR INFORMATION 
The tensor component of the important information  is the most difficult object from the 

computation viewpoint. Formally, it may be calculated via information dynamics equations of 
Einstein type18 for the Fisher information matrix as the metric tensor. Unfortunately, this 
approach engender extraordinary obstacles from the computation viewpoint. However, the 

Hessian 
mj

jm uu
H

∂∂
ε∂ 2

=  of the functional )()()( obs
kmkmik

obs
ijij fuAWfuAu −−=ε  may be used 

instead the Fisher information matrix WAAF *=  ( jiij ufA ∂∂ /= ) in the vicinity of optimal 

solution. Really, by differentiation of the gradient )( obs
kkik

j

i

j
j ffW

u
f

u
−==∇

∂
∂

∂
∂εε , one may 

obtain 

)(
22

obs
kkik

mj

i

m

k
ik

j

i

mj
jm ffW

uu
f

u
fW

u
f

uu
H −+==

∂∂
∂

∂
∂

∂
∂

∂∂
ε∂  (24) 

and  jmjm FH ≈ , since in the vicinity of the optimal point 0)( ≈− obs
kk ff . The computation 

of Fisher matrix via Hessian is much simpler if compare with approach18, and may be 
conducted either by second order adjoint equations19 or by differentiation of the gradient 
obtained from adjoint equations. However, these approaches need the number of runs of main 
and adjoint problems proportional to the length of control parameter vector p  that may be 
computationally expensive. This difficulty may be resolved by the iteration approach, where 
the action of the Hessian by the vector uδ  is obtained by the gradient differentiation 

auuauuH /))()(( εδεδ ∇−+∇=  (25) 

Since Hessian contains relatively small number of nonzero eigenvalues, corresponding 
eigenvectors (senior) may be obtained by Lanczos/Arnoldi iterations. The approximation of 
Hessian based on these vectors may be constructed according to paper20  as  

*
rrrreduced VVH Λ= . Here the matrix rp

r RV ×∈  is constructed using r  senior eigenvectors of 
H , corresponding r  senior eigenvalues are collected in a diagonal matrix 

rr
ir Rdiag ×∈=Λ )(λ . This trick enables the significant reduction of computations for the case 

pr << . 

6 FISHER MATRIX SCALAR INVARIANTS 
Fisher’s information matrix has the scalar invariants: determinant )det(F  and trace  )(Ftr . 
For the normal probability distribution, the Fisher matrix determinant is related with 

Shannon information content21: 

)det(log2/1 2 FISh =  (26) 

The trace is equal to Fisher information content  

)(FtrIF =  (27) 
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These invariants have a lot of practical applications, for example, in the paper21 they are 
used for the estimation of information content of experimental data. 

Shannon information content forms the basis of modern information theory and is 
extremely widely used. 

Fisher information (content) is less popular object, however, of great generality also. For 
example, Frieden and Soffer 22 applied it for the statement of fundamental physics equations. 

It should be noted that the Shannon and Fisher information contents are scalar values, so 
they provide relatively small knowledge regarding tensor information ppRF ×∈  and are not 
related with the vector component of important information. Shannon and Fisher information 
contents are suitable for the description of the systems with zero gradient and diagonal Fisher 
matrices. The state of such system is close to the goal functional extremum and the functional 
is isotropic in the space of parameters u . The Boltzmann/Shannon information/entropy is 
widely applied for the thermodynamic systems, the Fisher information also may be 
considered as another kind of entropy. No wonder that their application is restricted by the 
vicinity of thermodynamical equilibrium. 

7 DISCUSSION 
At present, the notion “information” is applied in extremely wide set of contents of 

different formalization extent. Respectively, the correlation of considered important 
information with another “informations” varies in broad margins. Several congeneric concepts 
we should mention. 

Shaw et al.10 for systems with intentional dynamics stressed the role of adjoint equations 
describing a “field of control-specific information in which the actor and the intended goal 
both participate”. The successful intentional behaviour was assumed to be feasible for self-
adjoint equations and was related with the quantum mechanics. Hiley and Pylkkanen11 
defined the information as the quantum potential in the hydrodynamic form of Schrodinger 
equation (Madelung equation 23). This potential is related to the Fisher information content. It 
is main reason for the correlations of quantum mechanics and the information. Reginatto 24 
demonstrated that the extreme of Fisher information content 

dxdt
x

IF

2ln
⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

= ∫
ρρ  (28) 

on the Hamilton-Jacoby equation may be used for derivation of Schrodinger equation in 
Madelung form. The conditions of stationarity of the Lagrangian 

FIU
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2
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⎠
⎞

⎜
⎝
⎛ +
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∂
∂
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engender the Madelung equations 
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where S  is the action and ρ  is the probability density ( *ψψρ = ), hxtiSextxt /),(2/1),(),( ρψ =  
is the wave function, Su ∇= . 
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This form practically coincides with the Euler equations (16-17) 

( ) 01
=∇

∂
∂

+
∂
∂ u

xmt
ρρ  (30) 

( ) 0
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1
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2/12

2/1
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⎜⎜
⎝

⎛
∂

∂
−∇+∇+

∂
∂

xm
hUu

mt
u ρ

ρ
 (31) 

with the main difference in the pressure term related to the Fisher information. It should be 
mentioned that, in the contrast to equations (12-14) and (16-17) designed for the search of 
preassigned goal, this system provides the search for the solution that is maximally uncertain. 
Frieden22 considered this situation as a contest between “Mind” (observer, which search for 
the maximum of information) and Nature, which maximizes disorder (minimizes the Fisher 
information). 

From other viewpoint, it is easy to add the goal term to the Lagrangian (29) and obtain 
corresponding adjoint equations, as in the paper25, providing the transfer of vector 
information. Hawkins  and Frieden26 enhanced this approach by including experimental data 
in the inverse problem stile (Eq. 14) for the financial economics. 

So, in quantum mechanics, the invariant of the tensor component of the important 
information directly affect the physical dynamics. This provides the basics to relate quantum 
mechanics with some information notions, such as “intentional information” by Shaw10 and 
“active information” by Hiley11. 

However, the only domain where the dynamics of the tensor component of important 
information is explicitly used is the famous Kalman filter27. It estimates a point at trajectory 
with the ellipsoid of concentration and is also based on the search of Fisher information 
content extreme. The covariation matrix is propagated by the evolution operator. However, 
this approach need for the prohibitively high computer resources for PDE based systems. 

In general, the logical structure of important information is the same as in statistic 
estimation problems 4,5 .  The distinctions concern interpretations and technique, especially in 
domains where the dynamics is governed by PDE systems. 

As we have already seen, the important information is intimately related with the 
evolution operator that, herein, is determined by a priori known dynamics of the system, 
governed by PDE. In this approach, the important information is totally objective one since it 
is not connected with an activity of any natural or artificial intellect.  

This standpoint seems to be too narrow since it is naturally to expect certain isomorphism 
of information origin and transfer processes both in the object and in the subject. Such 
isomorphism may be detected for neural networks, since the evolution operator ijA  
corresponds perceptron weights matrix28. So, the above described formalism may be applied 
to the origin and transfer of the important information in a subject (naturally, if it has the 
structure of some neural network). If the evolution operator is unknown, it may be determined 
in the learning process via the set of input data X  and the set of observations Y  (formally as 

+=YXA , where +X  is a pseudoinverse matrix, really using such algorithms as the 
backpropagation). Thus, the propagator at the learning is constructed using an extra sort of 
information (“raw information”, similar to some data base), which contains input data X  and 
corresponding responses Y . 
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8 CONCLUSIONS 
A formal definition for the important information that possesses many properties of the 

intuitive concepts of information such as described by Bongard 2 or Chernavskii 3 , may be 
stated in Inverse Problems. 

The important information corresponds the knowledge of the movement in the control 
variables space that is necessary to achieve the goal with the known uncertainty under the 
present system state. 

The important information has the vector and the tensor components. 
The vector component of important information may be related with the goal functional 

gradient showing a direction to the point of goal functional minimum in control variables 
space. If the dynamics is governed by PDE, the gradient may be computed using adjoint 
equations. 

The tensor component of important information defines the uncertainty at goal point 
(ellipsoid of concentration) and corresponds the Fisher’s information matrix, which (in PDE 
event) also may be computed by adjoint equations. 

The important information formalism may be applied to modeling of the origin and 
propagation of information both in the natural systems and in the neural networks. 
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