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Summary. The estimation of a vicinity of the approximate solution that contains the exact 
one (exact solution enclosure) may be performed using an ensemble of numerical solutions if 
the information on their error ranging is available a priori. A posteriori analysis of distances 
between numerical solutions enables error ranging by magnitudes, if the ensemble of 
numerical solutions separates into clusters of “accurate” and “inaccurate” solutions. For 
nonlinear problems this enclosure may serve as the computational proof of the exact solution 
existence. The impact of metric selection on the solution enclosure is observed. The numerical 
tests for the supersonic flows, governed by two dimensional Euler equations, demonstrate the 
exact solution enclosure using the set of solvers that have different orders of accuracy. 
 
1 INTRODUCTION 

We consider some additional opportunities for analysis of CFD results that may be 
provided by the abundant set of numerical methods with wide range of orders of 
approximation, which is available at present. 

Usually, the order of approximation of the finite-difference/finite volume scheme is related 
with the truncation error order. The truncation error uδ  is obtained via Taylor series 
decomposition of the discrete operator hhh fuA = , which approximates the system of PDE, 
formally noted herein as fAu = . The truncation error dependence on the spatial step h  is 
usually presented as )( nhOu =δ , where the order n  is equal to the minor order of series 
terms. 

The approximation error uuu h −=Δ  is caused by the truncation error and is of the real 
practical interest. It may be described by the tangent linear equation uuA δ=Δ  having the 
formal solution uAu δ1−=Δ . 

For linear problems, the approximation error )( nhOu =Δ  tends to zero as h  decreases 
with the same order n  (Lax theorem, [1]) if the discrete operator is well-posed (the inverse 
operator is uniformly bounded, CAh <−1 ). 

For the case of nonlinear equations with discontinuities [2,3,4,5], the error order is 
essentially local and varies significantly depending on the type of flow structure elements. In 
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this event, the observed order of convergence may be not equal to the nominal order of the 
approximation error even in the asymptotic range. 

Two single-grid based approaches to the discretization error estimation are of interest 
herein. 

A priori error estimation is the common approach to the error analysis and may be 
expressed in the form nhCu ⋅<Δ , which contains unknown constants independent on 
current numerical solution. A priori error estimation justifies the common practice to stop the 
mesh refining when the dependence of numerical solution on the step size becomes 
unobservable. This technique may be used for the proof of the exact solution existence [6] for 
linear problems. 

A posteriori error estimation [7,8,9] has the form hheCu ≤Δ , where hC  is the computable 
stability constant, which depends on the numerical solution, and he  is the computable 
indicator of the truncation error. At present, the most successes in this direction are achieved 
for elliptic equations and finite element methods starting from the work by Babushka [7]. In 
most of practical applications the stability constant is not estimated, while the error indicator 
is used for the mesh adaptation. 

The feasibility for rigorous estimations of the exact solution without mesh refinement is 
the significant merit of this approach. This is another way if compare with the standard mesh 
refinement approach, the Richardson extrapolation [12,13] and a multigrid approach, 
presented, for example, by [14]. 

However, a posteriori error estimation may provide more information regarding the exact 
solution, for example, [10,11]. A posteriori check that can be applied to a numerical solution 
of Navier-Stokes equations to guarantee the existence for the sufficiently smooth solution of 
the exact problem is considered in [10]. The paper [11] demonstrated for nonlinear elliptic 
equations that the estimation of the stability constant (inverse operator norm 1−

hA ) and the 
residual may be used for the determination of the vicinity of the numerical solution, which 
contains the exact solution. The results [11] are interpreted as the proof of the existence of the 
exact nonlinear solution nearby the approximate solution. This information may be of use due 
to problems with the existence for the compressible multidimensional Euler equations [15]. 
According [15] the standard weak solution may not exist for the compressible 
multidimensional Euler equations. The use of the measure-valued solutions (in Young 
measures), considered in [15], may cause unacceptable computational burden. So, the a 
posteriori proof of exact solution existence (even local) in the vicinity of the ensemble of 
numerical solutions may be of practical interest.  

We consider a single-grid analysis of another type, if compare with [10,11] herein. 
The truncation error uδ  may be computed by the action of the high order scheme stencil 

on the precomputed flowfield [16, 17], by the action of the differential operator on the 
interpolation of the numerical solution [18] or via the differential approximation [19,20]. The 
practical application of the truncation error uδ  implies the calculation of the discretization 
(global) error uAu δ1−=Δ . The surveys of the global error calculation methods may be found 
in [21, 22]. In the simplest option, the estimation of this error may be performed using defect 
correction [16] or nearby equation methods [22,23]. In defect correction frame, the truncation 
error uδ  is used as the source term inserted in the discrete algorithm in order to correct the 
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solution. However, the total subtraction of the error implies the elimination of the scheme 
viscosity that may cause oscillations in the vicinity of discontinuities or activation of some 
addition dissipation sources, which engenders their own error. Also, the estimation of the 
error may be performed via the linearized problem [24], complex differentiation [25] or by 
adjoint equations [17,18,20,26,27]. Usually, adjoint equations are applied to estimation of the 
uncertainty of certain valuable functional (drag, lift etc.). Nevertheless, the approach 
described in [20] enables to estimate the norm of the solution error. Unfortunately, it implies 
the solution of the number of adjoint problems that is proportional to the number of grid 
nodes that causes the extremely high computational burden. 

The unknown components of truncation error causes the general disadvantage of above 
discussed residual-based methods for the error estimation. The differential approximation 
based methods using Taylor series [20] do not account for senior terms of expansion. The 
postprocessor based methods do not account for the higher scheme truncation errors [17] or 
the interpolation errors [18]. 

Herein, the analysis is conducted in the space of numerical solutions, so, the truncation 
error is accounted implicitly and completely. The feasibility to find the vicinity of the 
numerical solution that contains an exact solution using the ensemble of calculations 
performed by the solvers of different approximation order is addressed. In contrast to above 
mentioned norm oriented approaches, the current analysis is addressed to the ensemble of 
distances (distance matrix) in different metrics. The Multidimensional Scaling (MDS) [28] 
concerns similar problems, however, we consider the events when the vector length is much 
greater the number of vectors, so MDS cannot be applied. 

2 EXACT SOLUTION ENCLOSURE VIA THE SET OF NUMERICAL 
CALCULATIONS WITH RANGED ERRORS 

The approximation error is considered herein as the distance between the exact and 
approximate solutions. Let us consider the ensemble of numerical solutions obtained using 
finite difference (finite volume) schemes of different order on the same grid. Let the relation 
of the approximation error of these schemes to be a priori known. 

We note the numerical solution as the vector Ni Ru ∈)(  ( i  is the scheme number, N  is the 
number of grid points), values of unknown exact solution at nodes of this grid (further 
denoted as exact solution) as NRu ∈~  and use some metrics ),( vud  in the space of solutions. 
The unknown deviation of exact solution values at grid points NRu ∈~  from computed 
solution is estimated using k

k uud ,0
)( )~,( δ=  (for example, 

2

~)~,( )()(

L

kk uuuud −= ). The 

numerical solutions )(ku  are located at surfaces of nested concentric hyperspheres with the 
centre at u~  and radii k,0δ . 

The following theorem may be stated for two numerical solutions )1(u  and )2(u  having a 
priori known errors relation 2,01,0 2 δδ ⋅≥ . 
 
Theorem 1. Let the distance 2,1δ  between two numerical solutions NRu ∈)1(  and NRu ∈)2(  be 
known from computations and there is available a priori information 

2,01,0 2 δδ ⋅≥  (1) 
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then the exact solution is located within the hypersphere of radius 2,1δ  with the centre at )2(u : 

2,1
)2( )~,( δδ ≤uu  (2) 

 
Proof. The analysis is founded on the triangle inequality [29]: kjikjikij ≠≠+≤ ,δδδ .  For our 

problem, (points )1(u , )2(u ,u~  and distances 2,02,11,0 ,, δδδ  between them) it has the form 

2,02,11,0 δδδ +≤ , which may be transformed to 122,01,0 δδδ ≤− . By accounting (1) as 

2,02,01,0 δδδ ≥−  one obtains 122,01,02,0 δδδδ ≤−≤  and, finally, the desirable expression 

122,0 δδ ≤ . 
 

This theorem may be easily stated in 2L  norm, statements in other norms are not 
straightforward, however, so the general metric based approach is of great advantage. Herein, 
we usually consider the metrics determined by 2L  and 1L  norm, the metrics of Mahalonobis 
form [30] is used also in several tests. 

3 THE ANALYSIS OF THE ERROR RELATIONS FOR AN ENSEMBLE OF 
CALCULATIONS 

The evident weakness of the Theorem 1 is the assumption of the existence of solutions 
with a priori ranged error. Despite the widespread opinion that the schemes of higher order 
are more accurate, it should be checked numerically. Herein, we consider some options for the 
check of error rating. The collection of distances between solutions ji ,δ  enables a detection of 
the close and distant solutions. For example, if i,01,0 δδ >> , the set ji,δ  is split into a cluster of 
inaccurate solutions with great values j,1δ  and the cluster of more accurate solutions 

)1(, ≠ijiδ . It is caused by the asymptotics 1/ 1,0,1 →δδ j  and 
0/)(~/)1( 1,0,0,01,0, →+≠ δδδδδ jiji i  at 0/ 1,0,0 →δδ i .  

The separation of the collection of distances between solutions into clusters is the evidence 
of the existence of solutions with significantly different errors that may be considered as a 
proof of error ranging. The quantitative criterion based on dimension of clusters and the 
distance between them is of interest. Let us compare the set of distances j,1δ  and jk ,δ , where 

)1(u  is maximally incorrect solution and )(ku  is the selected accurate solution (the localization 
of exact solution is performed in its vicinity), max,iδ  is the maximum error in the subset of 
accurate solutions. 

We state the following heuristical criterion (Conjecture 1): 
The exact solution may be enclosed if the distance between clusters is greater the size of 

the cluster of accurate solutions. Then the condition (1) is valid and the exact solution is 
located within a hypersphere of radius ki ,δ  with the center at )(iu : kii ,,0 δδ ≤ , where )(iu  

belongs to the cluster of more accurate solutions and )(ku  is maximally inaccurate solution. 
This conjecture is based on the assumptions that the dimension of the accurate cluster to be 

ki rr +max, , and a cluster of inaccurate solutions belongs the interval ),( max,1,0max,1,0 ii δδδδ +− , 
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the relation of accurate cluster dimension and the distance between clusters has an appearance 
kiikii ,max,,max,1,0 2 δδδδδ +>−− . This leads to the relation k,01,0 2δδ > , that corresponds 

condition (1). 
This criterion may be rigorous only in the limit of the infinite set of solutions obtained by 

independent methods. Nevertheless, most numerical tests for two dimensional supersonic 
inviscid flows confirm the applicability of this heuristic criterion. The violation of the 
enclosure condition 

22
,

)(~
LkiL

i duuu ≤−  above 15% was not observed. 

4 THE SELECTION OF METRICS 

The vector of solution for CFD problems contains elements having different physical 
meanings, such as density, velocity components, energy, etc. Herein, we consider two 
dimensional Euler equations with four component },,,{ )()()()()( iiiii EVUu ρ= . We consider 
the metrics engendered by the simplest 1L  and  2L  norms. 

The norm 

22
)}(),(),(),{( )()()()()()()()()()(

L

kikikiki

L

ki eeVVUUuu −−−−=− ρρ  (3) 

enables to calculate the distance between solutions. In parallel to Expression (3), the distance 
between solutions was calculated using the expression 

2

}/)(,/)(,/)(,/){( )()()()()()()()()()()()(

L

ikiikiikiiki eeeVVVUUU −−−− ρρρ , (4) 

which imitates a relative error. 
It should be noted that expression (4) corresponds not to the norm but to the distance 

2/1)()(
,

)()( )(),( i
k

i
jkj

ii uuMuMu ΔΔ=ΔΔ . This distance is determined by a metric tensor with the 
matrix kjM ,  of the diagonal form that describes some ellipsoid. With account of the 

presentation AAM *=  (valid for a metric tensor as the symmetric positively defined matrix, a 
Mahalanobis distance metric [30]) one can state 

2/1)()(2/1)()(2/1)(*)()()( ),(),(),(),( iiiiiiii zzuAuAuAAuuMu ΔΔ=ΔΔ=ΔΔ=ΔΔ . So, we can 

enclosure the solution in the transformed space )(iAu , where the error may have the form of 
hypersphere. 

The search for more complicated metrics, having some physical meaning and illustrative 
capabilities, is of interest also. The suitable metrics should not compare different variables, 
i.e. the matrix should have block-diagonal form with blocks related to different variables. It 
would be useful, if small flowfield deformations (shift by single step of grid, for example) 
corresponds small distances. So, the comparison of variables at adjacent grid nodes may be of 
use, i.e. blocks may have a band form. 
 

5 NUMERICAL TESTS 
The tests of the exact solution enclosure are presented below for flows governed by two 

dimensional unsteady Euler equations.  
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The elementary structures such as the single oblique shock wave, the interaction of shock 

waves of I and VI kinds according Edney classification [31] were used as the test problems. 
All tests concern the steady state solutions. The analytical solution may be easily constructed 
for these problems. The values of analytical solution at grid points is considered herein as 
“exact” solution. The flowfield contains undisturbed domains (nominal order of error is 
expected), shock waves (error order about 1=n  [5]), contact discontinuity line (error order 
about 2/1=n , [4]). In result, one may hope to obtain the nontrivial error composed of 
components with different orders of accuracy. The estimation of this error and the capture of 
exact solution in certain hypersphere around a numerical solution are the main purposes of the 
paper. 

 
(2D) ⏐ 13 Feb 2017 ⏐2d Direct

100 200 300 400
X

50

100

150

200

250

300

350

400

Y

(2D) ⏐ 13 Feb 2017 ⏐2d Direct (2D) ⏐ 21 Feb 2017 ⏐2d Direct

100 200 300 400
X

50

100

150

200

250

300

350

400

Y

(2D) ⏐ 21 Feb 2017 ⏐2d Direct

Fig. 1. Edney VI density isolines.  Fig. 2. Edney I density isolines.  

The computations were performed for 4.1/ =vp CC , Mach number range 53÷=M  and 

flow deflection angles range o3010−=α . All tests contain discontinuities in the flow field. 
Fig. 1 presents the density distribution for Edney VI flow structure ( 4=M , two consequent 
flow deflection angles o101 =α , o152 =α ). The flow is determined by the merging shock 
waves, the contact line and the expansion fan. Fig. 2 presents the density isolines for Edney I 
flow structure ( 3=M  and flow deflection angles o201 =α  and o152 =α ). The crossing 
shock waves and contact discontinuity line, engendered at the shocks crossing point, are the 
main elements of this flow structure. 
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The paper presents the analysis of the ensemble of computations performed by methods 
listed below.  

The first order scheme by Courant Isaacson Rees [32] designated as 1S  was used in the 
variant described by [33].  

The second order scheme based on the MUSCL method [34] and using algorithm by [35] 
at cell boundaries is noted as 2S . 

Second order TVD scheme of relaxation type by [36], noted as TVDS2 . 
Third order modified Chakravarthy-Osher scheme [37, 38] marked as 3S . 
Fourth order scheme by [39] marked as 4S . 
Computations were performed on uniform grids containing 100100× , 200200×  or 

400400×  nodes. The vector of solution of Eq. (5-7) contains four components  
},,,{ )()()()()( iiiii EVUu ρ=  having different physical meanings and different magnitudes. For 

example, for Edney VI flow (Fig.2) the norms of component are 5.2
2

)( ≈
L

iρ , 

87.0
2

)( ≈
L

iU , 24.0
2

)( ≈
L

iV , 17.0
2

)( ≈
L

ie , herein 
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⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+Δ+Δ=Δ ∑ ∑ ...1

1
iiL

U
N

u ρ . 
(9) 

 
The data under the consideration are extremely bulky, so for convenience of visualization, 

in Fig. 3-9 the norm of error is marked up along both axes, despite the data are one 
dimensional. 

For the level of error less 1.0  the solutions visually can not be distinguished. The only 
visually distinguishable solution corresponds the scheme 1S  (level of error about 2.0 ) and is 
specified by high smearing of shock waves. The level of error about 1.0  ( 400400× ) may be 
related with the shift of incident shock location by a single node. 

It should be noted that methods 4,3,2,1 SSSS  (1,2,3 and 4 nominal truncation orders) 
demonstrated the order of convergence a bit below 2/1=n  in norm 2L . In norm 1L  the same 
computations demonstrated the order of convergence a bit higher 2/1=n . The method 
S2TVD (nominal order 2) is the only exception with the order about 4/3~n . 

In numerical tests, we first check Conjecture 1 and, second, verify the enclosure. We 
consider the enclosure to be successful, if the error estimate 

2

)()(

L

ki uu −  is greater the true 

error 
2

~)(

L

k uu − , obtained in comparison with the analytical solution u~ . 

The comparison with the analytical solution permits to conclude that using the scheme 1S  
(as “inaccurate”) and schemes 2S , 3S , 4S  (as “accurate”) enables to find the vicinity of 
numerical solution that contains exact solution. 
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Second order TVDS2  scheme [36] from standpoint of error norm is close to first order 
scheme 1S  for 100100×  grid and to high order schemes for grid 400400× . When the 
clusters are detected, it also enables the enclosure of solutions generated by 4,3,2 SSS . If the 
clusters are not available, the exact solution is not enclosed. The calculations on the grid 

100100×  demonstrated the formation of clusters with “inaccurate” scheme TVDS2  and 
successful enclosure of the exact solution. However, the scheme TVDS2  on the grid 

400400×  does not form clusters. Paradoxically, the reason for this failure is the relatively 
rapid convergence of TVDS2  in comparison with schemes 4,3,2,2 SScSaS . In result, the 
scheme TVDS2  on the grid 400400×  transfers from “inaccurate” to “accurate” schemes 
approaching in error to 4,3,2 SSS . 

The comparison of schemes 4,3,2 SSS  (
2

)4()2(

L
uu − , 

2

)4()3(

L
uu − , 

2

)2()3(

L
uu − ) does 

not enable to enclose the exact solution. Similarly, the enclosure of exact solution by pair 
1,2 STVDS  fails. These schemes have the errors which are close in magnitude and splitting 

into clusters is not observed. 
If the Conjecture 1 is not satisfied (there are no clusters, or distance between them is less 

the dimension of the cluster of “accurate” solutions) the enclosure of true solution fails. 
However, the exact error is about two or three maximum distances between numerical 
solutions. 

The numerical tests for the single oblique shock demonstrate the feasibility for the exact 
solution enclosure at the significant distance between clusters, if splitting occurs. However, 
the set of distances between solutions separates into clusters in about half of tests, usually for 
more fine meshes. 

For Edney-VI shock interaction (Fig. 1), the set of distances between solutions also splits 
into clusters in about half of tests without dependence on the grid size. There is the enclosure 
of exact solution according expression (3), for the distance between clusters, which 
approximately equals the dimension of the cluster. 

Fig. 3 (with “inaccurate” scheme 1S , 2L , grid 400400× ) demonstrates the collection of 
distances between numerical solutions 

22

)()(
, L

ki
Lki uudu −=  to break into two clusters, one 

of them is related with the “inaccurate” scheme. It enables to enclose an exact solution. Fig. 4 
presents results of 2L  error enclosure based on clusters presented in Fig. 3. The norm 1L  
presents the same results as 2L  for this test, Fig. 5. 

For Edney-I shock interaction (Fig. 2), the set of distances between solutions splits by 
clusters in about half of tests, usually for more fine meshes. For the distance between clusters, 
which approximately equals the dimension of the cluster, the enclosure of exact solution for 
metrics engendered by 12 , LL  fails, see Figs 6,7. 
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Fig. 7. Exact solution enclosure (Edney-I) in vicinity of S2, S3, S4 using S1, L2, grid 400×400. 

The results are obtained for 3=M  and flow deflection angles o201 =α  and o152 =α . The 
magnitude of capture condition 

22
2,1

)2(~
LL

duuu ≤−  violation is about 10%. This demonstrates 

the heuristical, approximate nature of Conjecture 1. However, the violation of the enclosure 
condition is moderate. 

The metrics (4) related with relative error enables an more reliable enclosure, Figs. 8,9. 
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Fig. 9. Exact solution enclosure (Edney-I) in vicinity of S2, S3, S4 using S1, grid 400×400.  

Figs. 6-9 demonstrate the visible dependence of the enclosure success on the metrics that is 
used for the distances calculation. 

Thus, in order to enclosure the exact solutions, one should have a priori information 
(Theorem 1) or an ensemble of minimum three solutions with distances split into two clusters. 
The distance between clusters should be greater the dimension of cluster of more accurate 
solutions (Conjecture 1). 

6 DISCUSSION 
The relation of errors obtained in the paper is not necessarily attributed to properties of the 

considered schemes. In the strict sense, it may be caused by the imperfections of numerical 
realization by authors. So, authors do not pretend on the definitive assessment of considered 
methods. We only can compare solvers (algorithms realizations) from the viewpoint of 
numerical results. 

The standard check of the grid convergence is based on heuristic rule by C. Runge [9]. 
From this standpoint, if the difference of two approximate solutions on coarse grid hT  with 
step h  and on the fine grid refhT ,  with step refh  is small, then refhu ,  and hu  are probably close 
to exact solution. From practical needs, one should desire the estimate of the form 

δ≤− uuh
~  with computable δ . The Richardson method [12,13,22] is close to this ideal. It 

enables to determine the refined solution and the error estimate if the single error order exists 
in total flowfield. The set of solutions n

kkk hCuu 1
)1( ~ += , ...~

2
)2( n

kkk hCuu +=  computed on 
different meshes is used. Unfortunately, in most CFD problems the error order on different 
flow structures varies that hampers or prohibits the application of the Richardson method. 

The present paper concerns a single-grid alternative to the Richardson method and Runge 
rule. The set of solutions is collected at the same mesh using different methods. Calculations 
may be terminated if a preassigned error level δδ ≤)~,( uuh  ( δ≤− uuh

~ ) is achieved. 
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The existence of “accurate” and “inaccurate” schemes is one of the main postulates of 
computational mathematics, although having an asymptotic sense. The above results 
demonstrate the feasibility to distinguish “accurate” and “inaccurate” schemes in the sense of 
error norm ranging. For the events presented on Figs. 3, 5 the distribution of distances 
between solutions 

2
, Ljidu  shows the presence of two clusters corresponding “accurate” and 

“inaccurate” schemes. This engenders the hope to enclose the exact solution only from 
observable 

2
, Ljidu  (without a priori information on errors ranging), that is confirmed by 

Figs. 4,6,7. If clusters cannot be detected, the exact solution enclosure fails. 
The feasibility to estimate the distance from the exact solution to numerical one 

δδ ≤)~,( uuh  seems attractive, however, it is difficult to define at what magnitude of δ  two 
solutions can be considered as coinciding (the calculations may be stopped) or describing 
different flows. 

The estimation of uncertainty of certain valuable functionals (drag, lift etc.) is of interest in 
most of applications. This estimation may be performed using adjoint equations 
[17,18,20,26,27], nevertheless, it does not describe the flowfield in unique way.  

The ensemble based method operates the total error including flowfield error, initial and 
boundary condition error and round-off errors. It may be used as a postprocessor similar to 
Richardson extrapolation [12,13,22]. However, it does not need the mesh refinement and may 
be used away the asymptotic range. 

The dependence on the set of numerical methods and analyzed solution is the drawback of 
ensemble based method. The same set of methods may provide segregation by clusters on one 
flow pattern and may not provide on another. So, this approach cannot replace the standard 
accuracy control method (mesh refining) and is assigned to supplement it by non-expensive 
algorithm. 

If there is no breaking into clusters, the distance between numerical solutions and 
analytical ones is 2-3 times greater the maximum distance between solutions that provide 
some opportunity for the rough estimation of numerical error. 

So, it is feasible to obtain the information on the numerical error and exact solution 
location using the collection of solution obtained on the same grid by different solvers without 
mesh refinement. 

7 CONCLUSIONS 
The information on distances between numerical solutions in some metrics enables the 

enclosure of the exact solution and the estimation of the discretization error in this metrics. 
If two numerical solutions with the discretization error relating twice or more in some 

metrics are available, the exact solution is located in the hypersphere with the centre at the 
more accurate solution and with the radius, which equals the distance between solutions. 

If there is no a priori information on error ranging, the enclosure of the exact solution is 
feasible if the collection of solutions is available and it is split into separated clusters 
corresponding “accurate” and “inaccurate” schemes. The distance between clusters should be 
greater the dimension of "accurate" cluster.  

The numerical tests confirmed the efficiency of this heuristic rule in metrics corresponding 
2L  and 1L  norms for two dimensional supersonic problems governed by Euler equations. The 
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success of the enclosure is sensitive to the choice of the metric. The metrics, engendered by 
the norm, which imitate the relative error, provide an opportunity to enclosure the exact 
solution in certain events when 2L  and 1L  based enclosure fails. For nonlinear problems, the 
estimation of the vicinity of the numerical solution, which contains the exact solution, may be 
interpreted as the proof of the existence of the exact solution nearby the approximate solution. 
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